
a Enterec -- _ _A PAE -- ILEAD fSTR LC11ONS

)N PAG BEFORECO MP:.rE--NGORM~

1. AD- 2 4 779 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Honeywell 8 June 1988 to 8 June 1988

Bull, GCOS 8 Ada Compiler, Version 2.1, DPS 8000, "

DPS 8/70, DPS 90 (Host) DPS 8000, 8/70, 90 (Target)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards

Gaithersburg, MD

g. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Bureau of Standards

Gaithersburg, MD

i. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office
United States Department of Defense 13. u~et UP PAt

Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADORESS(f different from ControlisngOffice) 15. SECURITY CLASS (ofth,srepoft)
UNCLASSIFIED

National Bureau of Standards 15a. QICLAS IFICATION/DOWNGRADING

Gaithersburg, MD I HDu N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteredin 8iock?0 if different from Report)

UNCLASSIFIED DTIC
18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABS TRACT (Continue on reverse side if necessary and identify by block number)

GCOS 8 Ada Compiler, Version 2.1, Honeywell Bull, NBS, DPS 8000, 8/70, 90 under GCOS 8,

SR3000 ('lost) to Ppg 8000, 8/70, under GCOS&, SR3000 (Target), ACVC 1.9

DD u"' 1473 EDITION OF I NOv 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-O14-B01 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhenjDataEntered)

89 2 4 it

AVF ccntrol Number: NBS88VHFS505

Ada copiler
VAIDATION St-1RY REPORr:

Certificate Number: 880608S1.09144
Honeywell Bull

C-cnS a Ada Compiler, Version 2.!
DPS 8000, DPS 8/70, DPS 90

Ccpletion of On-Site h"nsting:
8 June 1988

Preared By:
Softare Standards Validation Gz-xr

:rszAizt-e for Cuter Sciences and Technology
Naticral Bureau of Standards

Building 225, Pcoan A266
Gait hersburg, Marjland 2C99

Prepared For:
Ma Joint Proaram Office

Utnited States De.DarlT nt of : eferse
Wa-si -nqtcn, D.C. 20301-3081

Ada Ccpiler Validation Summary Report:

Ccmpiler Name: GCOS 8 Ada Coupiler, Version 2.1

Certificate Number: 880608S1.09144

Host: Target:
DPS 8000, 8/70, 90 under DPS 8000, 8/70, 90 under
GCOS 8 GCOS 8
SR3000 SR3000

Testing Completed 8 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation FaciityjI
Dr. David K. Jefferon '
Chief, Information System
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

TABLE OF I'EINTS

CHAPTER 1 INT WCTION

1.1 PURPOSE OF 'TS VAIIDATION SUMMARY REPCUR 1-2
1.2 USE OF THIS VALfATIICO SU14IARY1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF THS. 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGU/RATION TESTED 2-1
2.2 IMPLEM A TION HAgRACTERISTICS2-2

CVAPrER 3 TEST INFO1.TION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TET RSUTBy. CSS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3 .4 W TESTS 3-2
3 .5 INAPPI.CABLE TESIS 3-2
3.6 TEST, PROCESSING, AND EVALUATItON MOIFICATIONS . . 3-4
3.7 ADDITIONAL TESTNG INFORMATION3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site3-5

APPENDIX A CONOT;N0SCETAT

APPENDIX B APPENDIX F OF THE Ada S"TANDARD DrI

APPENDIX C TEST PAAMETERS

Accesslon For

APPENDIX D WITHrAWN TESTS NTIS 'rPA&I
DTIC TA4 U

JuiK ___f

DI trlbutl cn/

Dist pc a
Av~~Thh~ ifyCc

. . . ----- -I
i

CNArM 1

Validation S Report C(VSR) describes the extent to which a
specific Ada coupiler onforms to the Ada Stardard, ANSI/MIL-SMD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of _testig this ompiler using the Ada Compiler
Validation Capability, .(ACWe. An Ada compiler must be implemented
according to the Ada Standard, and any implementaticn-deperdent features
must conform to the requirements of the Ada Standard. The Ada Stardard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

I

Even though all validated Ada compilers conform to the Ada Stardard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies-for example, the maximum length of identifiers or the
maximu= values of integer types. Other differen between compilers
result from the characteristics of particular operatinq systers,
hardware, or implementation strategies. All the dependencies bserved
during the process of testing this compiler are given in this report.

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inpits to an Ada
compiler and evaluating the results. The purpose of validating is to
ensure conformity of the ompiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

I-1

1.1 IURPOSE OFTHnS VAL1DON SUMMARY REPOR

This VSR documents the results of the validation testing performed on an
Ada ccupiler. Testing was carried out for the following purposes:

To attempt to identify any language costrcts suported by
the ccmpiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
regired by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted by the National Bureau of
Stardards according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was cmpleted 8 June
1988, at Honeywell Bull Corporation, Pnoenix, Arizona.

1. 2 USE OF THIS VALIDATION SUMR RE7R0

Consistent with the national laws of the originating cuntry, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordarce with the "Freeda of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating system, and ompiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and camplete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public fram:

Ada Information Clearinghouse
Ada Joint Program Office
auSDE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
Institute for Ccmputer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results shculd be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauresar Street
Alexandria VA 22311

1.3 RMMq 4S

1 . Reference Manual for the Ada rO d Larue,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Cmpiler Validation Capability Implerenters' Guide.,
Deceber 1986.

1.4 DEF ITION OF TOM

ACVC The Ada Cmpiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada cxriiler to
the Ada programining language.

Ada Commentary An Ada Ccmmentary contains all information relevant to
the point addressed by a ouument on the Ada Standard.
These comments are given a unique identification numiber
having the form AI-ddddd.

Ada Standard ANSI/MIi-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procures
contained in the Ada Camtiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
coupilers. The AVO provides administrative and
technical support for Ada validations to ensure
cnsistent practices.

1-3

Cmpiler A processor for the Ada lan.uage In the ointext of
this report, a coumiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the campiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The compiter on which the ccmpiler resides.

Inapplicable An ACVC test that uses features of the language that a
test ocupiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Laruage The Language Maintenance Panel (IMP) is a ccmittee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a ccxpiler generates the expected
result.

Target The cmputer for which a cxmpiler generates code.

Test An Ada program that checks a ccmpiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may coprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully campiled
and executed. There are no explicit program azrponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada oaipiler.
A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a campiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
comiler.

Class C tests check that legal Ada programs can be correctly cmpiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the campilation and execution capacities of a
campiler. Since there are no capacity requiraents placed on a compiler
by the Ada Standard for same parameters-for example, the number of
identifiers permitted in a compilation or the number of units in a
library-a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test ompiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Stardard permits an implementation to reject programs containing
same features addressed by Class E tests during coapilation. Therefore,
a Class E test is passed by a campiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
campiler for an allowable reason.

Class L tests check that incamplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time-that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Tw library units, the package REPORT and the procedure CECK FILE,
support the self-checking features of the executable tests. The package
REPORt provides the mechanism by which executable tests report PASSED,
FAIIED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat same cmupiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CECK
FILE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REPOra and CHCK _FILE is checked by a set of exectable tests. These
tests produce messages that are examined to verify that the units are
operating corretly. If these units are not operating correctly, then
the validation is not attented.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 daracters, use small niueric
values, and place features that may not be supported by all
implementations in separate tests. Hcwever, same tests contain values
that require the test to be customized according to
implementation-specific values-for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A campiler nust correctly process each of the tests in the suite and
demonstrate conformity to the Ada Stardard by either meeting the pass
criteria given for the test or by shwing that the test is inapplicable
to the iiiplenentation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Apendix D.

1-6

CHAP=E 2

C~trFIGLPATCN INP2-IT=CtN

2. 1 C&nIGRITION TrTED

The cardidate cavilation system for this validation was tested undier
the follcwing configuration:

Cc;iler-: GCCS 8 Ada C~tpiler, Versiocn 2.1

ACIC Version: 1.9

Cer-I.-icate Nnr:880608S1.09144

Host Carter-:

Machdie: Dr-S 8000, 8/70, 90

Operating System: GCOS 8

Memory Size: each ,nach-ine ras 32 Mawor: s

Taz-iet outr

Machine: DPS 8000, 8/-70, 90

cteratirg System: GO 8

Iver.'or Size: each machine has 32 Mgaw.ords

Cz-ri-nicatiors etwcrk: n~one used

2.2 IMPEMENTTION CARA RISICS

One of the purposes of validating copilers is to determire the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

- Capacities.

The compiler correctly processes tests containing loop
statenents nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately corpiled as subunits
nested to 17 levels. It orrectly processes a compilation
containing 723 variables in the sane declarative part. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An inplementation is allowed to reject universal integer
calculations having values that exceed SYSrE4.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4A02A, D4A02B, D4A04A, and D4A04B.)

- Predefined types.

This implementation supports the additional predefined types
LONG_NTEGMER, LONGM OAT, and in the package STANDARD. (See
tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSM.MAX INT during cmpilation, or it may
raise NUNMFRIC ERROR or CUZSflRAIT ERROR during execution. This
implerentation raises NUERIC ERROR during execution. (See
test E24101A.)

- Expression evaluation.

Apparently all default initialization expressions or record

2-2

components are evaluated1 before any value is cieckd to belong
to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERIC ERROR is raised when an integer literal
operard in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC EROR is raised when a literal cperand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rng.

The method used for rurding to integer is apparently rourd away
from zero. (See tests C46012A..Z.)

The method used for rurding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rourding to integer in static universal real
expressions is apparently rourd away from zero. (See test
C4AO14A.)

- Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGIM that exceeds
STANDARD. INTEGER ' LAST and/or SYS2.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM. MAX_INT components raises CISMUl ERROR. (See
test C36003A.)

NUMERICERROR is raised when 'ILENGI is applied to an array type
with IfEGER 'LAST + 2 ccmponents. (See test C36202A.)

NUERICERRoR is raised when 'LENGT is applied to an array type
with SYSEM.MAX_INT + 2 components. (See test C36202B.)

2-3

A packed BOOLEAN array having a ' IH exceeding IRI ' IASr
raises NUMERIC ERROR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than
DUEGE'ILAST components raises NUMERIC _R when the array
objects are declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTS'ER'LAST may raise NUMERICRR or CMO'RAIlr ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. Ths implementation raises NUMERIC_ERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before coNSrRA _ ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before C)NSrRAfl1 ERROR is raised
when checking whether the expression's subtyie is ompatible
with the target's subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a cmxpatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before COJSIRAINTERROR
is raised when checking whether the expression's subtype is
cpatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bouds. (See test E43212B.)

All choices are evaluated before CONSIRAIN ERROR is raised if a
bound in a ncnnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

2-4

- Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by sa of the tests. If a
representation clause is not supported, then the implementation
mist reject it.

Enmration representation clauses containing ncrcxntiguous
values for enumeration types other than dbaracter and boolean
types are supported. (See tests C35502I..J, C35502M..N, and
A39005F.)

EnImmration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enimeration representation clauses for boolean types containing
representational values other than (FALSE => 0, =JE => 1) are
not supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are not supported.
(See tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are not supported. (See test C87B62A.)

- Pragmas.

The pragma InIE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, IA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

- Ixpit/cutpit.

The package SEWJEfl'TAL_10 can be instantiated with unconstrained
array types and record types with discriminants without

2-5

defaults. (See tests AE2101C, E'220D, and EE220E.)

Mfl package Dn T O1 cannot be instantiated with wxxnstraine1
array types and record types with discriminants without
defaults. (See tests AE210IH, EE2401D, and EE2401G.)

mere are strings whidi are illegal external file names for
SEWW AL_IO and DIRECT_10. (See tests CE2102C and CE2102H.)

Modes IN FIIE and OJT FI=E are supported for SBEQUO ALIO.
(See test:s C1o2D and 21o2E.)

Modes INFILE, rT_FLE, and INOW FILE are supported for
DUWrT_IO. (See tests CE2lC2F, C2102, and C2102J.)

RESEr and DEITE are supported for SE h!EIAL_1O and DIRT_I0.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SE7JDEnAL_10 and DIP1CT_0. (See tests CE2106A and CE206B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OT FILE mode, can be
created in CUT FILE mode, and can be created in IN FILE mode.
(See test EE3LO2C.)

Temporary sequestial files are not given names. Temporary
direct files are not given names. (See test CE2108A and
CE2108C.)

- Generics.

Generic subprogram declarations and bodies cannot ocmpiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate ccmpilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

2-6

CHAPIR 3

TEST IN001TCU

3.1 TEST RESULTS

Version 1.9 of the ACVC caprises 3122 tests. Wien this ocimpiler was
tested, 28 tests had been withdrawn because of test errors. The AVF
determined that 231 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 68 tests (72
files) were required to successfully deonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testinq results demonstrate acceptable
conformity to the Ada Standard.

3.2 SLU2R OF TEST RES BY CLASS

RESULT TEST CLASS Tam
A B C D E L

Passed 106 1046 1632 17 16 46 2863

Inapplicable 4 5 221 0 1 0 231

Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SURY OF TEST RESULTS BY CEAPI

RESULT CHPTER TIOM
_______ .2 4 5 _14

Passe 192 503 561 245 165 98 140 326 135 36 232 3 227 2863

Inapplicable 12 69 113 3 0 0 3 1 2 0 2 0 26 231

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WIT[MfAW TESTS

The following 28 tests were withdrawn fram ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C4-1402A C45332A
C45614C E66001D A74106C C85018B C87BO4B CC1311B
BC3105A AD1A01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Sane tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attaqpted. A
test that is inapplicable for one validation atteapt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 231
test were inapplicable for the reasons indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use enu*ration
representation clauses for boolean types containing representational
values other than (FALSE => 0, TJE => 1). These clauses are not
supported by this ompiler.

C35702A uses SM3RT FLAT which is not supported by this implementation.

3-2

A39005B and C87B62A use length clauses with SIZE specifications for
derived integer types or for enmeraticn types which are not supported
by this cailer.

A39005E and C87B62C use length clauses with -%LL specifications which
are nat supported by this implemntaticn.

A39005G uses a record representation clause which is not supported by
this compiler.

The following (14) tests use SHOYRINTE, which is not supported by
this capiler.

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D

C45231D reaires a macro substitution for any predefined numeric types
other than iflfRs, s~ERTIR f, LO Gn mI, FLOAT, SO FIAT, and
LONG_FLOAT. This campiler does not support any such types.

C4AO13B uses a static value that is outside the range of the most
accrate floating-point base type. The declaration was rejected at
compile time.

B8600lD requires a prsdefined numeric type other than those defined by
the Ada language in package STANDARD. There is no sudh type for this
inplmentation.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation they are the same.

CA2009C requires a generic non-library package body be compiled as a
subunit in a separate file fram its specification. This implementation
is not supported.

CA2009F requires a generic non-library subprogram body be Ccnpiled as a
subunit in a separate file from its specification. This implementation
is not supported.

BC3204C and BC3205D require a generic library package body be cupiled
in a different file from its specification. This implementation is not
supported.

AE2101H and EE2401D use instantiations of package DIRECT 1O with
unxnstraied array types. These instantiations are rejected by this
compiler.

CE2105A and CE3109A attenpt to CREATE files with mode INFILE; this
implementation does not support such an operation.

CE2107A..I (9 tests), CE2110B, CE2111D, CE2111H, CE3111A..E (5 tests),

3-3

CE3114B, and CE3115A are inapplicable because multiple internal files
cannot be associated with the same external file. The proper exeption
is raised when niultiple acs is attemte.

CE2108A, 108C and CE3112A require names for temport files; this
implementation does not give temporary files names.

The following 173 tests require a floating-point accuracy that ex s
the raxiwmm of 17 digits supported by this implementation:

C24113N..Y (12 tests) C35705N..Y (12 tests)
C35706N..Y (12 tests) C35707N..Y (12 tests)
C35708N..Y (12 tests) C35802N..Z (13 tests)
C45241N..Y (12 tests) C45321N..Y (12 tests)
C45421N..Y (12 tests) C45521N..Z (13 tests)
C45524N..Z (13 tests) C45621N..Z (13 tests)
C45641N..Y (12 tests) C46012N..Z (13 tests)

3.6 TEST, PROCESSfl., AND EVAL=AION MODIFICATIONS

It is expected that same tests will reuire modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the m sful
cumpletion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confiming that messages produoe by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 68 Class B tests (72 files).

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D
B29001A B2AO03A B2AO03B B2A03C B33301A
B35101A B37106A B37301A B37302A B38003A
B38003B B38009A B38009B B51001A B53009A
B54AO1C B54AOIJ B55AOlA B61001C B61001D
B61001F B61001H B61001I B61001M B61001R
B61001W B67001A B67001C B67001D B91001A
B91002A..L (12 tests) B95030A B95061A
B95061F B95061G B95077A B97101A B97101E
B97102A B97103E B97104G BAII01BO..4 (5 tests)
BC1109A BC1109C BC1109D BC1202A BC1202B
BC1202E BC1202F BC1202G BC20O1D BC20O1E

3-4

3.7 ADDITIONAL TESTIMq INOFQCt

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the GCOS 8 Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demostrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the GCOS 8 Ada Campiler using ACVC Version 1.9 was coducted
on-site by a validation team fram the AVF. The configuration consisted
of a DPS 8000, DPS 8/70 and DPS 90 host operating under GCOS 8, Version
SR30000 and a DPS 8000, DPS 8/70 and DPS 90 target operating under GCOS
8, Version SR3000.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of impleentation-specific values were custnmized on-site after the
magnetic tape was loaded. Tests requiring modifications during the
prevalidation testing were not included in their modified form on the
magnetic tape. The contents of the magnetic tape were loaded directly
onto the host ccmputer.

After the test files were loaded to disk, the full set of tests was
catpiled and linked on the DPS 8000, DPS 8/70 and DPS 90, and all
executable tests were run on the same system. Object files were linked
on the host compter, and executable images were run on the same system.

The ccmpiler was tested using cummand scripts provided by Honeywell Bull
Corporation and reviewed by the validation team. The compiler was
tested using all default option settings without exception.

Tests were campiled, linked, and executed as appropriate using a single
host caupter and a single target computer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Honeywell Bull, Phoenix, Arizona and was
campleted on 8 June 1988.

3-5

APPE1NDfC A

DETARUAMIC OF CCFCF40KE

A-1

Compliance Statement

Base Configuration:

Compiler GCOS 8 Ada Compiler, Version 2.1

Test Suite: Ada Compiler Validation Capability, Version 1.9

Host Computer.

Machines: DPS 8000, DPS 8f70. DPS 90

Operating System: GCOS 8, Version SR3000

Target Computer:

Machines: DPS 8000. DPS 8/70. DPS 90

Operating System: GCOS 8, Version SR3000

Honeywell Bull Inc. has made no deliberate extensions to the Ada Language Standard.

Honeywell Bull Inc. agrees to the public disclosure of this report.

Honeywell Bull Inc. agrees to continue to comply with the Ada trademark policy, as defined by the Ada Joint
Program Office.

_______________________Date: F. I . / "

Honeywell Bull Inc.
R. Edward Kearns, Manager
Advanced Compiler Development

22

APPENDIX B

APPENDIX F OF MME Ada SINDARD

The only allowed implementation dependencies correspond to
impl ementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
iplementaticn-dependent characteristics of the GCOS 8 Ada Campiler,
Version 2.1 are described in the following sections which discuss topics
in Apvendix F of the Ada Standard. Inplemntation- specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -34359738368 .. 34359738367;

type LOM _INTEGE is range -2361183241434822606848
2361183241434822606847;

type FLOAT is digits 6 range -16#0.1#E128 ..
16#0.FFFFFFE#E127;

type LOWG FLOAT is digits 17 range -16#0.1#E128 ..
16#0.FFFFFFFFFFFFFFFE#El27;

type DURATION is delta 0.000016 range -1099511627776.0
775.99999904632568359375;

end SnDARD;

APPENDIX F OF THE Ada STANDARD

B-i1

APPENDIX F

IMPLEMENTA TION-DE l$NDENT
CHARA ,T ,STICS

This appendix describes the implementation-dependent ch tn 's of the GCOS 8 Ada

Compiler. This is the Appendix F referred to in the Ada re ual.

o Implementation-Dependent Pragmas

o Package SYSTEM

o Restrictions on Representation Clauses

- Type Representation Clauses

- Address Clauses

o Uchecked Conversion (7)
o Input/Output

- Introduction
- Implementation Ictices
- Form Parame 7 -

Topics (1), (3), (4), (7..and & ven in the Appendix F frame of the Ada Reference Manual
(ANSIUMIL-STD-185 aI-)scused below. Topics (2) and (5) are not relevant since
implementation dependent tri and implementation-generated names for implementation-
dependent components are no 'ported by the compiler.

Implementation-Dependent Pragmas

See Section 4 for a description of the implementation-dependent pragmas,
SINGLESEGMEN-T_DATA, MiULTISEGMENTDATA, and LNTERFACESPELLD;G.

F-1 6/17/88 DY76-00

Package SYSTEM I
See Appendix E for a listing of the package specification for SYSTEM.

Restrictions on Representation 9iuses

Type Representation Clauses $

In general, no type representation clauses may be given for a n'v type. The type representation
clauses that are accepted for non-derived types are described in fob ing:

Length Clause

The compiler accepts only length clauses that spcfy* 'ube of storag e units to be reserved for
a collection and the number of storage units to be rese dor an activation of a task.

Enumeration Repre ."-nt Wn-,lause

Enumeration representation clauses m spe representations only in the range of the predefined
type DITEGER.

Record Rep rsentati n Clause
Alignment clauses are no A component clause is allowed if, and only if, either of these

statements is true:

o The component type is a discrete type diffe:ent from LONGINTEGER.

o The component type is an array type with a discrete element type different from
LONG-INTEGER.

F-2 6/17/88 DY76-00

No component clause is allowed if the component type is not covered by the above two inclusions.
If the record type contains components not covered by a component clause, they are allocated
consecutively after the component with the highest AT value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler. The size of a componcit (or the
size of each element of a component if the component is an array) must be 1, 6, 9, 18, or 36 bits.

No names denoting implementation-dependent components are generated.

Address Clauses

Not supported. /

Unchecked Conversion

Unchecked conversion is allowed only between values of the sam 'e. In this context the size of
an array is equal to that of two access values and ize of a packed array is equal to that of two
access values and an integer.

Input/Output

Introduction
Although variations from th.ntax and ser tcs of the Ada language are not permitted, certain
choices made in the im p tatiNof the basic input/output system are visible to the Ada
programmer. These c, 'ices, i uding the operation of the FORM parameter, are documented

Other implementation cho)es e the basic file mapping and the interfaces to the operating

system and are documented in",b, don 4.

F-3 6/17/88 DY76-00

Implementation Choices

o An attempt to CREATE an INFILE will raise USEERROR.

o A RESET to OUT_FILE, on a sequential or text file, empties the file.

o Two imnemal files may not be associated with the same external file i taneously.

o Temporary files accessed by a batch program are not named. U o e function NAME
results in a USEERROR.

o An attempt to open a 'busy' file will result in the 11O exce don, STATU' ERROR.

Form Parameter

The FORM parameter can be the concatenation of any of the foo ng ngs separated by spaces:

"-FILCOD XX" This associates the intern aKi~rwith the external file designated by file code
XX where XX is a valid Ode o upLLe# by JCL. A file code takes
precedence over a NAME stn .d ,lcxde P* is treated specially. It is
written as media code 7 (ASC ,l'rnt) ahd report code 73. Any horizontal
tab character (HT, ASCII 9) is e verted to a space. A single space control
is appended to the end of every 1i. A page eject is placed at the end of
every page2 . ese ontrol characters must be taken into account if a disk
file i s to be! ne

"-MEDCOD N" This specifie Le "/ a , e of the external file where N is a valid media
code.

"-APPEND" T~i isonly.,,applicab e to sequential and text files; it results in a
,U-E ,ERRO. if it is applied to direct files. On opening a file with mode

/0 - FIE, ii specifies positioning at end-of-file so that writes will append
'ra the.han overwrite the file. It has no effect on creates or on opening files
w"7 4_FILE.

The space control sequence is a vertical tab character (VT, ASCII 11) followed by a byte (character) containing a
decimal 1.
2 The page eject sequence is a form feed character (FF, ASCII 12) followed by a byte (character) containing a
decimal 0.

F-4 6/17/88 DY76-00

Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point
allowed by the pragma.

Pragina ELABORATE

As in Ada Reference Mar.ual. /1

Pragma INLINE

This pragma is obeyed by the compiler whenever possible. he lrgrument is an overloaded
subprogram name, the INLINE pragma has an effect on al ubpr~ alh with the specified name

that appear in the same declarative part as the pragma.

Pragma LNLINE causes inline expansion, except in the following ca

o The whole body of the subprogram for w cinli e expansion is requested has not been
found (this also covers recursive calls).

o The subprogram call appears in an expression'/ whi h a conformance check may be
applied; for example, in a subprogram specifica ot, in a discriminant part, or in a formal
part of an entry declaration or accept statement.

A warning is given if inline expan onjsofcahie-,evd.

Pragma INTERFACE

This pragma is suppotc/ fo rsubpro grams written in other languages. The languages supported
by this interface areCQBO,85, C, and GMAPV assembly language. There are two forms of the
GMAPV interface: The"irst form follows the calling convention of COBOL-85 and C. The second
form follows the calling coien'otran of Ada. (Further information about the assembly language
conventions can be found elsewpere in this chapter.) The language names used in the pragma are
"COBOL 85', "C", "GMAPV", and 'GMAPVADA", respectively.

The subprogram name must be a legal Ada identifier, and it represents the name of the foreign
subprogram. If the foreign subprogram name is not a legal Ada identifier, the pragma
LNTERFACESPELLING (see definition below) must be used.

Example:

pragma LNTERFACE(COBOL85, sort);

This example designates a subprogram, whose externally-known name is "sort", which will be
invoked via the COBOL-85 calling convention.

Implementation Details 4.6 6/17/88 DY76-01

There are some restrictions which apply to foreign subprograms which use the COBOL-85 and C
calling convention:

* The subprogram must be a procedure and not a function. Function return values are not
supported.

" Neither COBOL-85 nor C subprograms support the Ada parameter mode OUT. To
achieve the desired result, it is necessary to use properly-declared access types. Parameters
to foreign subprograms in these languages should be of mode IN. It is possible for a
GMAPV subprogram to handle OUT (or IN OUT) parameters (wi ful coding).

• No conversion of parameters is performed by the Ada compilr is cess'rv that the
parameter types be compatible between Ada and the other I aguage. nteg r and access
types are strongly recommended.

Pragma INTERFACE SPELJT6N.

This implementation-defined pragma is used to specify the strin, iter hich represents the name
of an externally known subprogram. The name of a subprogram i~tezi in another language may
be an illegal Ada identifier. In that case, this pragma can be used to e tablish a correspondence
between the external name and the Ada identifier ec'ded in a pragma INTERFACE. The form of
this pragma is shown below:

pragma INTERFACE SPELLING(sub p ram_ e g literal);

Example:

pragma LNTERFACE SPEL tG AS ORT");

The identifier "sort" wil be used wihint --t aogm to refer to the external subprograr. The
compiler, however, will generate extern-a nces to "A.SORT".

This pragma is allowed at-the pIce of a dec arative item and must apply to a subprogram declared
by an earlier pragma 11XDAF CE.

Pragina LIST-,

As in Ada Reference Manual.

Pragma MEMORY SIZE

Not supported.

Implementation Details 4-7 6/17/88 DY76-01

Pragma MULTI SEGMENT DATA

This implementation-defined pragrna affects the method of storage access, and hence, the amount
of static storage which is accessible to this compilation unit. This pragma allows the compilation
unit to access over 256K words of static storage. (The default limit on static storage is 32K
words.) However, the access method is more costly when this pragma is specified. The form of
the pragma is shown below:

pragma MULTI_SEGMENTDATA;

This pragma is allowed anywhere a pragma is allowed. It will affect ompilation unit
and any subsequent units in the same compilation.

Pragma OPTIMIZE

This pragma has no effect.

Pragma PA CK

This pragma affects only array types with a discret pt LONGINTEGER) as component
type. The components of packed arrays are packed int,'he 9 iallest possible fraction of a word,
where a fraction of a word consists of 1, 6, 9, or 18 bi

Pragma PAGE

As in Ada Reference Manual.

Pragma PKIQRIlY

As in Ada Reference Mant/

Pragma SHARED

Not supported.

Implementation Details 4-8 6/17/88 DY76-01

Pragma SINGLE SEGMENT DATA

This implementation-defined pragma affects the method of storage access, and hence, the amount
of static storage which is accessible to this compilation unit. This pragma allows the compilation
unit to access up to 256K words of static storage. (The default limit on static storage is 32K
words.) However, the access method is more costly when this pragma is specified. The form of
the pragma is shown below:

pra.ma SINGLESEGMENTDATA;

This pragma is allowed anywhere a pragma is allowed. It will affect t rre ompilation unit
and any subsequent units in the same compilation.

Pragma STORAGEUNIT
A

Not supported.

Pragma SUPPRESS

The implementation supports only the following fo o e gma:

PRAGMA SUPPRESS (identifier);

Thus, it is not possible to restrict th sinof a certain check to a specified name.

Pragma SYSTEM NAMME

Not supported.

Address Cau e(s
V

Not supported.

Machine Code Insertions

Not supported.

Implementation Details 4-9 6/17/88 DY76-01

SYSTEM SYSTEM

SYSTEM

package SYSTEM is

type ADDRESS is access INTEGER;

subtype PRIORITY is INTEGER range 1.. 15;

type NAME is (DPS8, DPS88, DPS8000, DPS90, DPS

SYSTEMNAME :constant NAME :=DPS8;

STORAGEUNIT: constant :- 36;
MEMORYSIZE : constant 256 * 1024;

-- System-Dependent Named Numbers:

MIN_INT constant longinteger'POS(lon teger'first);
MAX_INT : constant long.integer'POS(Ion ntegerlast);
MAXDIGITS : constant := f t'digits;
MAXMANTISSA : constant
FINEDELTA : constant ,,
TICK • constant := 0.

type interface language is (GMAPV L-.85, PL6, FORTRAN_77, C, GMAPVADA);

end SYSTEM;

System-Supplied Program Units E-36 6/17/88 DY76-01

- - -I-II-

File: STANDARD.ADA a

Saved: 07-21-88 at 12:59:28 pe Page 1
*--

-- 12-APR-1985 22:21:48.78 /ADAMNTJJ

-- Date 29 july 1985

-- Programmer Svedn Bodilsen

-- Project DDC Ada Compiler System
-- GCOS-6 version
-- Source text for predefined package STANDARD

-- Module STANDARDS.ADA

-- Description This source text is read by the package STANDARD builder.

-- Changes Initial version 29 March 1985

-- Copyright 1985 by Dansk Datamatik Center (DDC).
-- This program as well as any listing thereof may not
-- be reproduced in any form without prior permission
-- in writing from DDC.

FALSE -- SHORTINTEGER DEFINED

TRUE -- INTEGER DEFINED
-34_359_738_368 -- INTEGER LOWER BOUND
34_359_738_367 -- INTEGER UPPER BOUND
36 -- INTEGER BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT

TRUE -- LONGINTEGER DEFINED
-2_361_183_241_434 822 606 848 -- LONGINTEGER LOWER BOUND
2_361_183_241_434_822606_847 -- LONGINTEGER UPPER BOUND
72 -- LONGINTEGER BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT

FALSE -- SHORTFLOAT DEFINED

TRUE -- FLOAT DEFINED
6 -- FLOAT DIGITS
-1640.1*E128 -- FLOAT LOWER BOUND
16*0.FFFFFFE#E127 -- FLOAT UPPER BOUND
36 -- FLOAT BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT
16#0.FFFFF8#E127 -- FLOAT SAFELARGE
16*0.8*E-127 -- FLOAT SAFESMALL
508 -- FLOAT SAFE_EMAX
16 -- FLOAT MACHINERADIX
6 -- FLOAT MACHINE_MANTISSA
127 -- FLOAT MACHINEEMAX
-128 -- FLOAT MACHINE_EMIN

--

File: STANDARD.ADA
Saved: 07-21-88 at 12:59:28 pm Page 2

-- *

TRUE -- FLOAT MACHINEROUNDS
TRUE -- FLOAT MACHINEOVERFLOWS

TRUE -- LONGFLOAT DEFINED
17 -- LONGFLOAT DIGITS
-16#0.I#E128 -- LONGFLOAT LOWER BOUND
16#O.FFFFFFFFFFFFFFFE#El27 -- LONGFLOAT UPPER BOUND
72 -- LONGFLOAT BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT)
16#0.FFFFFFFFFFFFFFC#E127 -- LONGFLOAT SAFE-LARGE
16#0.8#E-127 -- LONGFLOAT SAFESMALL
508 -- LONGFLOAT SAFEEMAX
16 -- LONGFLOAT MACHINERADIX
15 -- LONGFLOAT MACHINEMANTISSA
127 -- LONGFLOAT MACHINEEMAX

-128 -- LONGFLOAT MACHINEEMIN
TRUE -- LONGFLOAT MACHINEROUNDS
TRUE -- LONGFLOAT MACHINEOVERFLOWS

FALSE -- SHORTFIXED DEFINED

TRUE -- FIXED DEFINED
-34_359_738_368 -- FIXED LOWER BOUND
34_359_738_367 -- FIXED UPPER BOUND
36 -- FIXED BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT
FALSE -- FIXED MACHINE ROUNDS
TRUE -- FIXED MACHINEOVERFLOWS

TRUE -- LONGFIXED DEFINED
-I_152_921_504_606_846_976 -- LONGFIXED LOWER BOUND
I_152_921_504_606_846_975 -- LONGFIXED UPPER BOUND
72 -- LONGFIXED BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT
FALSE -- LONGFIXED MACHINEROUNDS
TRUE -- LONGFIXED MACHINEOVERFLOWS

TRUE -- DURATION DEFINED

-1099_511_627_776.0 -- DURATION LOWER BOUND
1_099_511_627_775.99999904632568359375 -- DURATION UPPER BOUND
0.000016 -- DURATION DELTA
2*1.0#E-20 -- DURATION SMALL
-20 -- DURATION SMALLPOWER

-- (2**SMALLPOWER = SMALL
72 -- DURATION BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT
FALSE -- DURATION MACHINEROUNDS
TRUE -- DURATION MACHINE-OVERFLOWS

36 -- BINARY DIGITS FOR ALL ENUMERATION TYPES
-- (NUMBER OF BITS FOR EACH OBJECT

APPENDIX C

T=T PARAMETERS

Certain tests in the ACVC make use of implementaticn-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substuted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG IDI <1..248 => 'A', 249 => 'I'>
Identifier the size of the
maximum irpxt line length with
varying last character.

$BIGID2 <1..248 => 'A', 249 => '2'>
Identifier the size of the
maximu input line length with
varying last character.

$BIG ID3 <1..124 => 'A', 125 => '31,
Identifier the size of the 126..249 => 'A'>
maximum input line length with
varying middle character.

SBIG ID4 <1..124 => 'A', 125 => '4',
Identifier the size of the 126..249 => 'A'>
maxium input line length with
varying middle character.

$BIG In LIT <1..246 => '0', 247..249 =>
An iReger literal of value 298 '298'>
with enough leading zeroes so
that it is the size of the
maximum line length.

SBIG REAL LIT <1..244 => '0' 245..249 =>
A universal real literal of '69.00'>
value 690.0 with enough leading
zeroes to be the size of the
maxi um line length.

C-1

$BIG_STRINGI "(124) A"
A string literal which when
catenated with BIG STING2
yields the image of BIG_IDI.

$BIGSIRING2 <1 => ", 2..125 => 'A',
A string literal which when 126 => 1"'>
catenated to the end of
BIG_SIrI1 yields the image of
BIGIDi.

$BLNI <1..129 => I 1>

A sequence of blanks twenty
characters less than the size
of the maxim=u line length.

$Cl _LAST 34359738367
A universal integer literal
whose value is
TEXT_IO. COUNT' LAST.

SF=EI_LAST 75
A universal integer
literal whose value is
TEXT 10. FILD' ILAST.

$FILE_NAME WrTH_BADOARS F(*FILE
An external file name that
either contains invalid
characters or is too long.

SFILE_NAME WIM WILD CARD CHAR N234567890123
An extenal fie name that
either contains a wild card
character or is too long.

$GREAT_ THAIN DURATICN 0.0
A universal real literal that
lies between DURATION' BASE' LAST
and DURATION'ILAST or any value
in the range of DURATION.

SGREATER_PikAN_IJRATICtBASE_LAST 1100000000000.0
A universal real literal that is
greater than DURATION' BASE 'ILAST.

$ILLEGAL EXIERNAL FILE NAME1 F@EAME
An external file name which
oontains invalid characters.

C-2

$ILiAL aE I L FILENME2 N
An external file name which
is too long.

sIGER FIRST -34359738368
A universal integer literal
whose value is INTM' FIRST.

$INTEGERIAST 34359738367
A universal integer literal
whose value is DIr' sIr.

$lNE LAST PLUS 1 34359738368
A Univesal - integer literal
whose value is I REE'LIAST + 1.

$LESS THAN DURATION 0.0
A universal real literal that
lies between DURATION' BASE' FIFST
and WURATIIN' FIRST or any value
in the range of DURATION.

$S THAN DURATION_ BASE_ FIRST -1100000000000.0
A universal real literal that is
less than DURAION' BASE' FIT.

$MAX DIGITS 17
Maximum digits supported for
floating-point types.

IN D4UN 249
Maxirm inpuit line length
permitted by the implementation.

$MAX n Lr 2361183241434822606847
A universal integer literal
whose value is SYS'IE.MAX INT.

$MAXirPIS_1.2361183241434822606848
A universal integer literal
whose value is SYSI=. MAX_11114-1.

SMAX LEN _IW BASED LITERAL <1..244 => '0', 245..249 =>
A universal inteer based '2#11#'>
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINL N
long.

C-3

$MAX_LEN_REAL BASED LrTERAL <1..242 => '0', 243..249 =>
A universal real based literal '16#F.E#'>
whcse value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN_ LE long.

%9SM 2INGLrTERAL <1..247 => 'X'>

A string literal of size
MAX_IN_LE, includir the quote
dui~acters.

SMIN_NT -2361183241434822606848
A universal integer literal
whose value is SYSTEh.MIN WI.

$NAME r(Lsuctk type
A name of a predefined numeric
type other than FLOAT, InIE,
SHORT FLOAT, SHORTIN-TR,
LONG-FIDAT, or LONGITNT .

$UE _ASbna i6#ter literal who#
A based inteer literal wbose
highest orer nonzero bit
falls in the sign bit
position of the representation
for SYSI.MAX INT.

C-4

APPENDIX D

WITHPAM TESTS

Same tests are withdrawn fram the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGA LIST (ON) ;' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising COSTRAIN_ E R.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the ncmimal upper bound of a
fixed-point type to an object of that type raises
CNS'TRAINTERRDR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSIRAINT_ERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its cmpatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or COSTRAINT ERROR for reasons not
anticipated by the test.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CNSIIRAINT_ERROR.

D-1

9m

C37215C, Various discriminant constraints are wrongly expected
E, G, H: to be ircatible with type CONS.

C38102C: The fixed-point onversion on line 23 wrongly raises
CazNrAInr _EmiR.

C41402A: 'SIORAGESIZE is wrongly applied to an object of an access
type.

C45332A: T test expects that either an expression in line 52 will
raise an exception or else mA NE_OVERFIw is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINEOVERFIC may still be TRUE.

C45614C: REPORT. IDENTINT has an argument of the wrong type
(10MI),.

E6600ID: This test wrongly allows either the acceptance or rejection of
a parameterless function with the same identifier as an
enumeration literal; the function must be rejected (see
Cczentary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87B04B, CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
CC1311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADIA01A: The declaration of subtype NT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attenpt to open the default output
file (after it was closed) with mode IN_FILE raises NAME ERROR
or USE_ERROR; by Commentary AI-00048, MXDE_ERROR should be
raised.

D-2

